Modelo de Aprendizado Incremental Baseado em Uma Rede Neural com Arquitetura Adaptativa

Nome: Patrick Marques Ciarelli
Tipo: Tese de doutorado
Data de publicação: 12/12/2012
Orientador:

Nomeordem decrescente Papel
Elias Silva de Oliveira Co-orientador
Evandro Ottoni Teatini Salles Orientador

Banca:

Nomeordem decrescente Papel
Alberto Ferreira De Souza Examinador Interno
Edgar Schneider Examinador Interno
Elias Silva de Oliveira Orientador
Evandro Ottoni Teatini Salles Coorientador
Fábio Daros de Freitas Examinador Externo
Klaus Fabian Coco Examinador Interno
Wagner Meira Júnior Examinador Externo

Resumo: Este trabalho apresenta uma abordagem baseada em Redes Neurais Artificiais para problemas de classificação multi-rotulada. Em particular, foi empregada uma versão modificada da Rede Neural Probabilística para tratar de tais problemas. Em experimentos realizados em várias bases de dados conhecidas na literatura, a Rede Neural Probabilística proposta apresentou um desempenho comparável, e algumas vezes até superior, a outros algoritmos especializados neste tipo de problema.
Como o foco principal deste trabalho foi o estudo de estratégias para classificação automática de texto de atividades econômicas, foram realizados também experimentos utilizando uma base de dados de atividades econômicas. No entanto, diferente das bases de dados utilizadas anteriormente, esta base de dados apresenta um número extenso de categorias e poucas amostras de treino por categoria, o que aumenta o grau de dificuldade deste problema. Nos experimentos realizados foram utilizados a Rede Neural Probabilística proposta, o classificador k-Vizinhos mais Próximos Multi-rotulado, e um Algoritmo Genético para otimização dos parâmetros dos mesmos. Nas métricas utilizadas para avaliação de desempenho, a Rede Neural Probabilística mostrou resultados superiores e comparáveis aos resultados obtidos pelo k-Vizinhos mais Próximos Multi-rotulado, mostrando que a abordagem utilizada neste trabalho é promissora.

Acesso ao documento

Acesso à informação
Transparência Pública

© 2013 Universidade Federal do Espírito Santo. Todos os direitos reservados.
Av. Fernando Ferrari, 514 - Goiabeiras, Vitória - ES | CEP 29075-910